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With respect to small perturbations, we examine the stability of a steady flow (with a gradient)
of a non-Newtonian fluid obeying a rheological power law in a flat channel. We have found the
neutral stability curves for various values of the exponent n in the rheological law.

In this paper we will investigate the stability of a steady plane flow with a gradient for fluids obeying
a rheological power law, for which the relationship between the deviator of the stress tensor sij and the
strain-rate tensor fij (the rheological law) is written [1] in the form

55 =2k, 0" ;; (n>0, {,j=1,23), (1)

where w =+ Zfijfij- On the basis of the adopted terminology, media with n > 1 are referred to as dilatational
fluids, while those with n < 1 are known as pseudoplastic. The case n = 1 corresponds to a Newtonian fluid.

From the equation of motion for the medium, written in the absence of body forces,

du; dv; ap ds;;
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o (p is the density of the medium; p is the pressure; vi is the component of the
\\ velocity vector) for a steady flow in a plane channel under the action of a con-

16 N stant pressure gradient in the direction of the axis x; = x (v, = U, vy =vg = 0)
N<=¢2 with consideration of the boundary conditions we can find the profile of the dimen -

14 AN sionless velocity [2] in the form
87 n+1
= U =1—lyi " ®)

with the axis xy = y perpendicular to the channel wall; in making the transition
to the dimensionless quantities, we have taken the maximum velocity at the
center of the channel for the case in which y = 0 as the characteristic velocity;
we have taken the half-width of the channel as the characteristic dimension.
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ad ] The stability of flow (3) is studied in relation to small two-dimensional
o 3:33 L N perturbations in the velocities u' and v' along the x- and y-axes, respectively.
, \ \\ N The equations of motion and continuity are linearized in the usual manner [3].
\;?\ N If we introduce the stream function for the perturbations
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Fig.1. Neutral stability and seek the solution for ¥ in the form

curves, ¥ (%, y, 1) = (y) exp [ia (x — ct)}, (5)
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Fig.2. Critical value of the gen-
eralized Reynolds number as a
function of the exponent n in the
rheological law.

where D = d/dy, and Re =

(U — ) (D* — o) — (D) =

U-h pn
charLcha

n =1, Eq. (6) changes into the Orr—Sommerfeld equation [3].

¥ : where ac is a complex dimensionless frequency of perturbations, we
/ can derive the generalized Orr-—-Sommerfeld equation for fluids with
a rheological power law, For regions of flow
dU/dy < 0, the generalized Orr—~Sommerfeld equation has the form

(DU
i

—~1 =y = 0, in which

{(DU) n(D? — oy

+ (n— 1) {21 (DU) (D) D? -+ [40? (DU) + n(DU)(D*U)
+a(n+ 2) (DU D* + 2 (n — 2) «* (DU) (D) D
+ a’n [(DU) (D°U) +- (n — 2) (DU} ¥, (6)

/ky, is the generalized Reynolds number for power-law fluids. With

The boundary conditions for the function ¢ are set at the half-width of the channel at the points y;
=1 and y, = 0, with the latter condition understood as the limit. For even perturbations, which are the
most dangerous from the standpoint of flow stability, the boundary conditions are the following:

${yy) =D (y)) = DY () = D’ () = 0.
If ¥ is given by the asymptotic expansion
N W)
1‘P (y) - 2 ((1 Re)s ’

the first pair of independent solutions of (6) is found from
{U—0oD*—a)p—(DU)p =0,

which is the equation of the zeroth approximation of #(y) in (8}.
of power series in y — y¢, where y, is the point at which U(ye) = c:

WO = (g — ) Zak (¥ — ),

The solutions of

(7

(8)

(9)

(9) can be found in the form

(10)
DU (y.)
© — 40 In (y— 2V by — o,
vz =P In(y—g) DU () 2 w0 — 1)
where
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a; = 3 3 by = 33
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Another pair of independent particular solutions of (6) is found in

0 %gS A the form
2 © I——m
] : 15 /%\\:Sﬁ Yy=exp(fgdy); g=7 (@Re)? g,. (1D

QK m=0
=2, 08 e . .
; //// 4 Substitution of (11) into (6) enables us to determine
3 10, ' .
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a% ::%\ 5 - as a result of which we can find
Fig.3. Critical value of the max- _5 ne-1 { CRRET—
imum velocity in the channel as a Yo =W —0) TOU exp[ J l/ Wdy:l (13)
function of n. A

Solutions ¥; and ¥, near y =y, are found directly from (6) on introduction of the new variable

I
n:i—z—yi; e = (@Re) 7. (14

If we seek the solution ¥{y) = x(n) in the form of a series in powers of £

x () = i ghy 8, (15)
k=0

after equating the coefficientsfor identical powers of € we find
© [ 2 o 5]
X3 = jldﬂ j‘ i Hij [*‘ (ian) J dn, (16)

i 3
: — 2 . >
2 = jdnj Vo [5« (tan)szn,
where H /3 and H(2/) are Hankel functions, and

n

i/[DU_ (!/c)]zrn . (17

The asymptotic Hankel function enables us to identify X; and x, with the solutions ¢ and ¢,, and X; and X,
with the solution ¢; and ¢y, as well as to determine the required branch in the circumvention of y,,

T T
—— < arg (y — Y,) << ——. 18
8 < arg (¥ — Yye) 5 (18)

The condition of nontriviality for the general solution of (6), according to the usual procedure [3], leads to
the secular equation which, after evaluating the terms in order of magnitude, is written in the form

| Dy (g) Dy (yy)
M = iD‘lH (y2) D%, (1) (19)
¥ () Py (yy) $a(yy) |
Dy {4} Dpa (1)

The left-hand member of (19) is expressed in terms of the tabulated Tietjens function, while the right-hand
member is calculated by means of the found solutions for (10). The solution of the transcendental equation
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(19) by the Tollmien [3] method leads to neutral curves which separate the stability region from the non~
stability region at the (¢, Re) plane.

Figure 1 shows the neutral curves calculated for the values of n = 0.1, 0.3, 0.4, 0.8, 1.0, 1.4, 2.0, 2.8,
and 3.0. Figure 2 shows Reé{f as a function of n. As we can see from the curve, the value of the critical

generalized Reynolds number over a wide range of variation in n changes only slightly. Nevertheless, the
stability losses in the laminar channel flow of a fluid obeying a rheological power law will be realized at
various values of n for various values of the critical velocity Uqp. If we introduce the notation A =ky Re(®
/an, for determined values of A, using Recyr as a function of n, on the (Ugy, n) plane we can construct acr
family of lines separating the stability and instability regions. The cross-hatched areas in Fig. 3 corre~
spond to the velocity values at which we have a loss in laminar-flow stability when A = 1.2 and 0.8.

NOTATION
Sij is the stress-tensor deviator;
fij is the strain-rate tensor;
w is the intensity of the strain-rate tensor;
kp, n are rheological constants of the medium;
U is the velocity of the steady flow;
u', v' are components of the velocity perturbations;
¥ is the stream function for the perturbations;
1) is the amplitude of the perturbations in the stream function;
o is a real dimensionless wave number;
Re is the generalized Reynolds number for the power-law fluids;
D is the differentiation operator;

D1y Yoy B3y Py (Xys Xos X35 Xy are independent particular solutions of the Orr—Sommerfeld equation.
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